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A wave-guide model for turbulent shear flow 

By MARTEN T. LANDAHL 
Massachusetts Institute of Technology 

(Received 26 August 1966 and in revised form 9 February 1967) 

It is shown that for a dynamical system admitting wave propagation modes 
(i.e. a wave-guide) the cross-power spectral density for stationary random 
fluctuations in the system will be dominated by the waves if they are lightly 
damped, the reason being that these can correlate over large distances of the 
order the inverse of the damping ratio. For a turbulent shear flow the wave 
propagation constant is obtained approximately from the solution of the Orr- 
Sommerfeld problem for the mean flow. Numerical calculations for a flat-plate 
boundary layer produce results for the streamwise dependence of the cross-power 
spectral density for the surface pressure fluctuations in good qualitative and 
quantitative agreement with measurements. An exception is the convection 
velocity for which the theory predicts a value that is somewhat too low. 

1. Introduction 
The present work grew out of an attempt to relate the statistical properties of 

wall-pressure fluctuations beneath a turbulent boundary layer to the overall 
gross properties of the mean shear flow. The aim was to find a way to estimate the 
cross-spectral density from the one-point power spectrum and the mean velocity 
distribution. It was hoped that this statistical quantity, which is required, for 
example, in the calculation of the response of a flexible flight structure to 
boundary-layer noise, could be obtained with a considerable saving in the 
amount of measured data needed. This goal was partly reached. In  addition, 
however, certain more general properties of shear flow turbulence were discovered. 

A great deal of theoretical work has been devoted to investigations of the 
statistical properties of the wall-pressure fluctuations. Virtually all the published 
papers on this subject have been based on writing the differential equation for 
the pressure as a Poisson equation with non-linear fluctuating-stress terms and 
terms involving interaction with the mean shear considered as ‘source terms’. 
This approach has been tried by, among others, Kraichnan (1956) and Lilley & 
Hodgson (1960). The di&culty with this is that the theory cannot be carried 
very far without making several assumptions about the form of the source 
terms. 

The present approach is completely different in that an attempt is made to 
relate the fluctuating pressures to the stability problem for the mean flow. It has 
been pointed out by Mollo-Christensen (1967) that measurements of pressure 
correlations in jets and free shear layers give strong evidence of a wave-like 
character of the fluctuations, despite the fact that they are completely random. 
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The importance of the stability aspects of turbulent shear flow has of course 
been recognized for some time. The stability of the mean flow plays a fundamental 
role in Malkus's (1956) well-known theory of turbulent shear flow. He hypo- 
thesized that, among the turbulent fluctuations, there were at least some that 
were marginally stable and that they must be selected within a class that gives 
maximum viscous dissipation. The theory was successful in predicting a mean 
velocity profile in good agreement with experiment, but it now appears (Reynolds 
& Tiederman 1967) that his success might have been fortuitous. It will later be 
seen that the present theory allows one to investigate Malkus's hypotheses 
regarding the stability of the mean flow. 

2. Random disturbances in a wave-guide 
In order to bring out the importance of wave modes for random disturbances 

and their proper interpretation, consider for simplicity the case of a one- 
dimensional wave-guide into which stationary random disturbances are intro- 
duced. Let the random signal be of the form p(x ,  t )  and assume further homo- 
geneity in x so that the correlation function 

is independent of x and t (bar denotes ensemble average). In  this probIem it will 
be more instructive to work instead with the cross-spectral density S,, here 
defined as 

Let $ ( E ,  w )  denote the generalized Fourier transform of p ( x ,  t )  with respect to 
x and t ,  

e--i(kz--oi)p(x, t )  dxd t .  
@ =JJ -ca 

Then the wave-number-frequency spectrum 8,,(E, w )  being defined as the Fourier 
transform of S,, with respect to 5, is related to $ through the formula 

where S is the generalized Dirac delta function and star denotes complex con- 
jugate. Thus, 

The random disturbances will excite the wave modes in the wave-guide and the 
Fourier transform of p will thus contain terms of the form 

where a(") = a&) + ial") are the wave propagation constants. Here we have given 
the result as it would appear if one first carried out the Fourier transform with 
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respect to t and then with respect to x. If the transform with respect to x were 
carried out first, the result would be of the form C/(w - w(n)), where 

w(d = ,&I + i@ 

are the complex eigenfrequencies for real wave-numbers. The final result for the 
cross-spectral density obtained after inversion of the x-transform would, of 
course, be the same in both cases (cf. analysis following (26) below) corresponding 
physically to the correlation of wave-like disturbances each varying like 
exp( - acn)(w) x) downstream from their origin. 

The coefficients Ccn) will generally be functions of k and w.  Note that in order 
for the disturbance field to be statistically homogeneous in x, the waves must all 
be damped, otherwise the effects of the ends of the wave-guide will always be 
felt, and the statistical properties will thus depend on x.t Hence sin) must be 
positive for waves travellingin the positivex-direction (i.e. for cg) = ( w / ~ l ( n ) ) ~  > 0 )  
and negative for waves travelling in the negative x-direction ( ( o / & ) ) ~  c 0). 

Substituting (5) into (4) we can evaluate the contribution from the wave 
modes by contour integration. Considering for simplicity only waves travelling 
in the positive x-direction (cg) > 0 )  we obtain 

where 

and the contributions from the poles of Un), C("), if any, have been omitted. Of 
special interest is the case when one or more of the wave modes are lightly damped 
so that lap)] < Iag)I. Then the main contribution will arise from m = n and be 
of the form 

Thus, for waves of equal order of amplitude, the least attenuated wave denoted 
by superscript zero, say, will generally give the largest contribution to the cross- 
spectral density. The interpretation of this result is that a wave can correlate 
significantly with other waves of the same frequency and phase that originate 
within a distance of order (ain))-l. Hence the waves will dominate in the cross- 
spectral density if lightly damped, because they will then generally correlate 
over a much larger distance than non-wave-like disturbances. 

3. Random disturbances in a parallel shear flow 
The result of the previous section, that the least damped travelling waves will 

dominate statistically for the homogeneous and stationary case, is of course true 
regardless of what particular physical wave propagation mechanism is con- 

? An infinitely long wave-guide with linear response would of course be impossible in 
the unstable case. 
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sidered. In  the present case we are concerned with a viscous shear flow for which 
it is well known from the theory of hydrodynamic stability that propagation of 
wave-like disturbances is possible. 

For simplicity, we will consider the fluid to be incompressible. We split the 
random velocity field into a mean part and a fluctuating part by setting 

q(xi, t )  = ?&(Xi) + ug(xg, t ) .  (8) 

The assumption will be made that the fluctuations are statistically stationary 
and homogeneous in the x1 = x- and x3 = directions and that the mean flow is 
parallel, i.e. that 

(9) 

in accordance with the usual practice in hydrodynamic stability theory. The 
parallel-flow assumption is consistent with statistical homogeneity in the 
x,-direction. It holds strictly only for a flow between parallel, infinite planes, but 
provides an excellent approximation in the case of the flow in an attached 
boundary layer. For a free shear layer or a jet it is not so good, but as will be 
discussed later, the assumption of statistical homogeneity in the x,-direction will 
then have to be abandoned, anyway. 

Substitution of (8) into the Navier-Stokes equations and subtraction of the 

- - 
a,  = U(x2); u2 = 0, u3 = 0, 

mean part gives 
-+u.-+u.- aui - aui aui = azJ +vsi+g?, 
at jaxj ?axj paxi ax; 

where q = (a/axj) (w - uj ui). (11) 

By taking a/axi of this and applying the continuity equatic n 

au,lax, = o (12) 

we obtain 

or, with x1 = x, x2 = y, x3 = x ,  
av 

Q2P = - ftpU’(y) +pV . T, 

where T = (Tz, Tu, T,) is the vector corresponding to (11). This equation, which 
looks deceptively simple, has attracted a great deal of attention. As originally 
suggested by Lighthill (1952) and Townsend (1956) one can solve (14) formally by 
assuming the right-hand side to be known and treat i t  as a Poisson equation. This 
approach has been followed by, among others, Kraichnan (1956) and Lilley & 
Hodgson (1960). Unfortunately, in order to obtain any quantitative results, one 
is forced to make several assumptions about the unknown right-hand side. 
Furthermore, because the linear terms V2p on the one hand and 2pU‘ avlax on the 
other are not treated in an equal manner, important aspects of the mathematical 
structure of the problem remain hidden, in particular the possibility of the 
ocuurrence of eigensolutions. 
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In  order to produce an equation which contains all the linear terms on the left- 
hand side, we may use the second of (lo),  viz. 

With this, &/ax can be eliminated from (14) and one can hence get an equation 
in terms of p ,  or alternatively one can eliminate V2p and thus produce an equation 
for v. The first course was followed in a preliminary paper (Landahl 1965). Here 
we will instead follow the second approach so that certain results from hydro- 
dynamic stability theory can be more readily applied. Thus, by taking a/ay of 
(14) and V2 of (15) we obtain 

where 
a 

a Y  
q = V2Tu-- (V.T) .  

If T and hence q are considered known, one can solve (16) subject to the homo- 
geneous boundary conditions that v and avlay vanish at the surface y = 0, and 
far away from it (for the boundary-layer case). The condition for avlay at y = 0 
follows from the application of the continuity equation (12). Having v, one can 
then proceed to calculate p ,  the quantity of primary interest, by solving (14). 
A more convenient equation for the pressure is obtained through the combination 
of ( 13) with the y-derivative of (1 5) which gives 

From the results for p we may obtain the u- and w-components, if so desired, by 
integrating the remaining momentum equations. 

We will now attempt to solve (16) by application of Fourier transformation 
in x, z and t. Letting 

exp{ - i ( k . r - w t ) } v ( r , t ) d r d t ,  v^ = ///l 
i@yl- (20) 

we obtain (Uk, - w )  GzO - U"k,6 + iuQ40 = - 

C(0) = V ( 0 )  = O(m) = C' (00 )  = 0,  

where G2 = dz/dyz - k2, is the triple Fourier transform of q and k = (kz, k&. To 
put this equation in a more familiar form we introduce non-dimensional quantities 
in the manner common in hydrodynamic stability problem (distances referred to 
boundary-layer thickness, 6; velocities referred to the free-stream velocity, U,, 
so that U(y) = 1 for y 2 1). In the non-dimensional form of the equation, we 
also set 

(21) 
k, = U, 

w = UC, u = 1/R, C = -ik#(y), 
kB = p, 
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where R is the Reynolds number based on the boundary-layer thickness and free- 
stream velocity. Then, (20) becomes 

i 
(U  - c )  (q5" - kZ+) - U"$ + - aR (qw - 2kZq5" + k44) = $/ak, (22) 

which is recognized as a non-homogeneous Orr-Sommerfeld equation. A formal 
solution is most easily obtained through an expansion in terms of the eigen- 
functions of the homogeneous problem (see, e.g. Eckhaus 1965). Let c(n) denote 
the (complex) eigenvalues of c for a given (real) set of a, p and R. Also, let $ ( f f l )  

be the associated eigenfunctions. Then, setting 

q5 = cA(")$W(y), (23) 

1 O3 a$(") dY , (24) 
h 1 

one can show that 

where $@) are the corresponding eigenfunctions for the adjoint problem 

A(n) = 
ak(c-c("))  0 

) (25) 
( U - C )  ( ~ " - l C 2 $ ) + 2 U ' $ ' + ( i / a R ) ( $ i ~ - 2 k 2 ~ ' + k 4 ~ )  = 0,  

&O) = $yo) = $(a) = qqa) = 0, 

and the eigenfunctions have been normalized in such a manner that 

Let kx = a t )  be the (real) value of kxfor which kX&) = w.  Then the denomi- 
nator k a ( c  - c(n)) = k(w - adffl)) in (24) will vary near the pole for a fixed (real) value 
of w like (assuming that the variation of CY) with w is small) 

1 - k(k, - a&)) (ac'"') 21 - k[ (k, - u p )  - (aCp)&) + i a p c p  
a a 

aa 

21 - kcg(kx - ak"' - i a p )  

using the usual approximate relationship between temporal and spatial amplifica- 
tion rate, cg being the group velocity. It thus follows that (23) will have poles near 
the real axis of the form (k, - where = a&) + iap) are the eigenvalues 
for the spatial case (complex a for given real values of w ,  ,13 and R). 

Turning now to the pressure, we find through Fourier transformation of (18) . .  

i i 
[( U - c )  4'- U'#] +- (qY - k2q5') +a: 

aR 

that 

Since 8 has terms that are linearly related to q5 it follows that it, also, must have 

contributions of the form CCn) 
-a(ffl) 

representing travelling waves. Applying the result (7) above (and extending it to 
propagation in two dimensions), we then find that the cross-spectral density 
must obtain its largest contribution from the least attenuated mode and be of the 
form 

(iak0)5-aL0)Itl +ik&dk!, (29) 
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where @(Os0) is a function of both 3 and w ,  related to  the spectral function of the 
coefficient as obtained from the non-linear stress terms. The eigenvalue a@) 
is, of course, also a function of both w and IC, = /3, for a given R, and we cannot 
proceed any further at this stage without more information about its behaviour. 

4. Eigenvalue calculations for a flat-plate boundary layer 
We seek the lowest eigenvalue do) = a@ + iap) to the Orr-Sommerfeld problem 

} (30) 
(U - C) (4'' - k2$) - U $  + (i/aR) ($'V - 2k2$" + k4$) = 0, 

$ ( O )  = $' (O)  = $(a) = $'(Co) = 0, 

where k2 = a2+/32 

for given (real) values of w = ac, R and /3. This is the usual stability problem for 
a laminar boundary layer with the velocity distribution U(y), except that now 
actual eigenvalues (for the spatial case) instead of just stability boundaries are 
required. (From the previous analysis it was concluded that the waves will always 
be found to be stable.) Since the Reynolds numbers of interest for the turbulent 
boundary layer are very high, it might seem appropriate to apply the same 
asymptotic methods that have been so successful in stability theory. 

Unfortunately, the range of parameters of interest in the present problem is 
quite different from that encountered in the traditional stability problem. With 
the standard quantity used for reference values (boundary-layer thickness for 
length; free-stream speed for velocities) one finds that typical values are 

1.1 = 10- 100, 1/31 = 0-  1000, 

R = 50,000- 500,000. 

Furthermore, because of the logarithmic part of the turbulent velocity prome, 
it turns out that U", a quantity that is implicitly assumed t o  be of order unity 
in hydrodynamic stability theory, may be of the order of thousands near the wall. 
Lower figures can, of course, be arrived a t  by using some smaller reference 
length, for example, the displacement thickness &*, the viscous length Z+ = v/ur,  
or the wall layer thickness (approximately 202+), but then one needs to account 
for the fact that the edge of the boundary layer is located far out in terms of the 
reference length. It soon becomes clear that the traditional approach even with 
modifications to  account for the large wave-numbers is not suitable, and that a 
direct numerical attack on the eigenvalue problem is the most profitable one. 

In  the numerical solution of (30) one is faced with a rather serious numerical 
stability problem. This is due to the small parameter (aR)-l multiplying the 
highest derivative in the equation. An asymptotic analysis of the Orr-Sommerfeld 
equation shows that of the four linearly independent solutions, two solutions 
and $2 vary moderately through the boundary layer and are closely approxi- 
mated by the solutions of the second-order equation obtained from (30) by 
neglecting the viscous terms (the so-called inviscid Orr-Sommerfeld equation 
or Rayleigh equation). The remaining two solutions, $3 and $4, on the other hand, 
depend very strongly on R and grow or decay in an oscillatory manner extremely 
rapidly. A straightforward numerical integration will therefore, because of round- 
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off errors and other inaccuracies, eventually give a result dominated completely 
by the rapidly growing viscous solution, regardless of what starting conditions 
are used. Since the final result is likely to behave essentially like an inviscid 
solution, except near the wall and around the ‘critical point’ U = c, it  is clear 
that such a straight-forward integration is bound to fail in practice. A method to 
cope with this difficulty was devised by Kaplan (1964). (For a description, see 
also Landahl & Kaplan 1965.) The method employs integration from the outer 
edge of the boundary layer and a filtering technique to remove excessive contami- 
nations by the viscous solution at each integration step. Kaplan used this 
technique for the stability analysis of a laminar boundary layer over a flexible 
surface and, in view of his success, it was judged to be the best available method 
for the present problem. 

A fairly extensive set of programs to handle the stability problem for a variety 
of velocity profiles and wall conditions (including those corresponding to com- 
pliant walls) was developed building-block fashion, around this method and put 
on the MIT IBM7094 time sharing system.? This system allows direct com- 
munication with the computer, and turned out to be a rather essential tool for 
the present problem in that extensive numerical experimentation became 
feasible. For the integration of the differential equation a Runge-Kutta scheme 
was employed. Since a turbulent velocity profile varies rapidly in the region next 
to the wall, the program was designed to allow for a step size that could be varied 
in four different integration regions. For the velocity profile, Reichardt’s (1951) 
expression for the wall region and logarithmic region, together with Coles’s (1956) 
universal ‘law of the wake ’? gives the formula 

U/u ,  = ( I/K) In (1 + KY+) + y( 1 - e--y+/av - ( y+/a ) e--O33v+ 1 
+ 1-38 {1+sin[(2y-1)&1-]}, (31) 

and u, = (&cf)4 (cf = friction coefficient) is the wall friction velocity normalized 
with the free-stream velocity. For the constants K, y ,  and 8, the following values 
were used: 

The friction velocity u, was chosen so as to give the same displacement thickness 
Reynolds number as in the experiments by Willmarth & Wooldridge (1962). The 
velocity profile is shown in figure 1. The corresponding Reynolds number based 
on boundary-layer thickness for this case was approximately 4.105. The Reynolds 
number used in the Orr-Sommerfeld equation, however, was actually left as a 
free parameter in order that the accuracy and convergence of the Kaplan puri- 
fication scheme for extreme values of the Reynolds number could be assessed. 
The calculation of an eigenvalue proceeds as follows. First, the integration is 
started at the edge of the boundary layer with starting conditions corresponding 
to the solution q53 using a guessed value for the eigenvalue. A second integration 
is carried out for subject to the appropriate starting condition, but this time 
the filtering technique is employed to avoid contamination by &. These two 

t For a more detailed description of these calculations, see Landahl (1966). Further 
numerical results, including the eigensolutions, will be presented in a later publication. 

where Yf = Y%/V 

K = 0.4, = 7.4, 8, = 11.0. 
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solutions are then combined to satisfy the condition of zero tangential velocity 
a t  the wall. The condition of zero normal velocity serves as the eigenvalue 
criterion. If this is not satisfied to withina specified tolerance, a second trial value 
for the eigenvalue is used; from the third trial on, the program selects values 
using a Lagrangian interpolation formula to speed the convergence. Whenever 

1 .o 

"o, 0.5 
a 

0 1 .o 

FIGURE 1. Mean velocity proiile used. Edge of boundary layer at y+ = 12770. 
Displacement thickness S*/S = 0.1228. R = 402,300, R,. = 49,300, u, = 0.0315. 

the initial guess was reasonably close to the correct value, the program usually 
homed in on the eigenvalue in 4 tries or less. For the highest Reynolds number 
values employed, it was necessary to start the search very close to the eigenvalue; 
otherwise the calculation would not converge. The calculated results were 
subjected to the following checks. 

(a )  The number of integration steps was gradually increased until the eigen- 
value no longer changed substantially. 

( 6 )  The integration routine was checked for the velocity distribution 

U(y) = const. = 1, 

for which an analytical solution can readily be derived. 
( c )  The eigenfunctions were calculated and their smoothness checked. 
( d )  The program was applied to the Blasius velocity profile and the results 

compared to those of earlier calculations. 
From these checks it was determined that the filtering technique to supress 

numerical instability works for surprisingly large Reynolds numbers, but that its 
range of applicabiIity seems to fall somewhat short of what is desired for a com- 
parison with the experimental results of Willmarth & Wooldridge (1962). The 
highest value of R for which self-consistent results for the eigenvalues were 
obtained was R =40,000 which is about one tenth of the laboratory value. 

29 Fluid Mech. 29 
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Although the program occasionally yielded results for some higher Reynolds 
number values, convergence difficulties were experienced, as well as increased 
sensitivity to changes in integration step size, etc., and these results were 
therefore judged less reliable. They indicate, however, that, somewhat sur- 
prisingly, there is still a very small but noticeable variation of the eigenvalues 
with the Reynolds number a t  R = 40,000. 

Considerable numerical experimentation was carried out to establish the effect 
of integration step size. In  order to make sure that the effects of the rapid 

2.c 

-2 

2 
;3" 1.0 -,- 

I 

- Re = 5,000 
---Re = 10,000 

= 40,000 

I 
2 4 6 

W S * / U ,  
2 4 6 

W S * / U ,  

FIGURE 2.  Propagation constants for zero wave angle. 
(a )  Real part. ( b )  Imaginary part. 

variation of the velocity profile in the viscous wall layer were properly accounted 
for, several calculations were carried out with a step size as small as Ay = 0.0001 
near the wall. Clearly, without the feature of the program that allows a variable 
step size to be used, such a calculation would be prohibitively time consuming. 
It was also discovered that in most cases one could dispense with the integration 
in a substantial outer portion of the boundary layer, since the disturbance was 
found to be very nearly irrotational (i.e. to vary as exp ( - Icy)) for Icy > 3. Hence, 
for the higher frequencies the range of integration could be reduced by a factor 
of 5 to 10. In most of the results presented below, 150 steps and a uniform step 
size were used, but a large portion was checked by application of a substantial 
variation of the number of steps and the step size distribution. 

Figure 2 shows the results for various Reynolds numbers of the calculations 
for waves that are normal to the flow (IcB = 0) plotted using the non-dimensional 
frequency d * / U ,  (6" = displacement thickness). The imaginary part is only of 
the order one-tenth of the real part showing that the waves are lightly damped as 
required in the theory. (From the point of view of hydrodynamic stability theory, 
however, these waves having a ci - 0.08 would be considered highly stable.) 
Because of their small magnitude, the imaginary part shows the highest sensi- 
tivity to the choice of integration parameters, and to small variations in the 
shape of {;he velocity profile near the wall. The vertical bar in figure 2 b  indicates 
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the estimated uncertainty in the results (the major contribution being the 
uncertainty in the velocity distribution). Both the real and imaginary parts are 
seen to increase slowly with the Reynolds number, and the R = GO limit does not 
seem to have been reached at R = 40,000. It is also remarkable that the variation 
of a lw  is so small over the large frequency range covered, i.e. that the waves are 
almost non-dispersive. 

I- 
0 3  

0.2 

3 . 
b8 
2 

0.1 

1 I 

2 4 
WS*/U, 

FIGURE 3. Progagation constants for oblique waves, 0 = 60°, at R = 40,000. 
(a)  Real part. (b )  Imaginary part. 

The influence of wave obliquity (Ic, + 0 )  is illustrated in figure 3. Here eigen- 
values calculated for R = 40,000 are shown for a wave forming an angle of 
8 = 60" to the stream ( IC ,  = a, 4 3 ) .  The real part is seen to be practically un- 
influenced by wave angle, whereas the imaginary part is increased somewhat 
indicating a slightly higher damping. That the wave angle should have a small 
effect can also be shown to follow from the application of Squire's theorem to 
non-dispersive waves with slow variation of propagation speed and damping 
with the Reynolds number. 

5. Results for the cross-spectral density 
The calculated eigenvalues can now be inserted into the expression ( 2 9 )  to 

obtain the cross-spectral density. However, in order to evaluate the integral one 
also needs the function W0> O), which is related to the statistics of the non-lineaJ 
stress terms and cannot be obtained with the aid of the present theory. Portu- 
nately, the very small sensitivity of the eigenvalues to the wave angle, and hence 
to Ic,, allowsus to carry theresults considerably further with only minor additional 
approximation. In  the expression ( 2 9 )  the main variation of the integrand with 
kz must clearly be due to the factor O), and the variation of the exponential 
containing a@) can safely be ignored, since its effect on the value of the integral 
will be very small. We may therefore set (omitting the superscripts) 

( 3 2 )  
29-2 
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------- -_-.__..-.---.- 

where 

- 

Here S(w) is the power spectrum and B(5, w) a function describing the variation 
of the cross-spectral density with spanwise separation, normalized in such a way 
that B(0, w) = 1. If we assume that the Fourier transform 2 is a function of the 

1 -0 

$ 0 5  
bV 

0 2 4 6 
WS”/U, 

FIGURE 4. Convection velocities. Experiments by Willmarth & Wooldridge (1962) 
(see Corcos 1964). 

wave angle, only, i.e. of kz/aR, rather than of ka separately, we find that B should 
be a function of the variable aR 5. Defining 

we may write the result in the following form: 

where 

and d = a,/an. 

Equation (34) is recognized as the similarity expression proposed by Corcos 
(1964) on basis of the experiments by Willmarth & Wooldridge (1962) using the 
same definition of the convection velocity V, and the streamwise decay function 
A as equations (33) and (35), respectively. 

The approximation (32) suggests that one should use for the eigenvalues those 
calculated for the value of hz for which the transform has the maximum. 
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Examination of Corcos’s (1964) results for B indicates that its transform should 
be highly peaked around IC, = 0 so that the major contribution to the pressure 
cross-spectral density seems to come from waves that are nearly normal to the 
stream. Thus, the results for zero wave angle presented in figure 2 would be the 
most appropriate ones to use. 

The convection velocity is shown in figure 4 and the exponential decay factor 
d in figure 5. It is seen that both are functions that vary slowly with frequency. 
The convection velocity decreases slowly with increasing Reynolds number, 
whereas the decay rate is essentially independent of R so that it can, for all 
practical purposes, be represented by a single curve. 

-Re = 5,000 
--- Re = 10,000 
-..-Re = 40,000 

I I 

FIGURE 5. Theoretical decay coefficients. 

6. Discussion of the results 
Experimental values of the convection velocity as determined by Corcos (1964) 

from the measurements by Willmarth & Wooldridge (1962) are included in 
figure 4. It is seen that the theory gives convection velocities that are too low for 
the very high value of the laboratory Reynolds number (R 1~ 4.105). Although 
consistent numerical results could not be directly obtained for such a high 
Reynolds number, logarithmic extrapolation indicates that the theory would 
give values of around 0-5Um compared to the experimental ones of about 
U, = 0.7Um. For a Reynolds number of 5000, however, which is about 80 times 
smaller than the experimental value, both the magnitude of U, and its variation 
with frequency is in excellent agreement with the measurements. A very signi- 
ficant conclusion that can be drawn from the experiments is, as shown by 
Corcos (1964), that the convection velocity as defined by (33) is independent of the 
streamwise separation distance c, to within the accuracy of the experiments (see 
his figure 7 ) .  This result strongly supports the hypothesis made in our theory 
that there is only one dominant wave mode present. 
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A comparison of the experimentally determined streamwise decay (Corcos 
1964) with the theoretical results evaluated for wS*lU, = 0-5 and 4 is shown in 
figure 6. The experiments produce very nearly the same curve for all frequencies. 
Willmarth & Roos (1965) suggested that the simplest analytical curve that would 
fit the data is an exponential of the form (35) with d = 0.1145. This value is 
bracketed nicely by the theoretical values 0.105 and 0.130 used in the figure. 

10 20 30 
W U &  

FIGURE 6. Streamwise decay of cross-spectral density. Experiments by Willmarth 
& Wooldridge (1962) (see Corcos 1964). 

In  fact, to use a constant value of d would not be inconsistent with the numerical 
uncertainty of the calculated decay rate (cf. figure 2). A constant decay rate 
implies that each eddy decays on the average in a distance proportional to its 
own size. Such a result is consistent with Millikan’s (1938) interpretation of the 
logarithmic portion of the velocity profile as one for which there is no distinct 
length scale. Hence, the only scale that the decay of an eddy can be measured in 
is the size of the eddy itself. 

Another interesting result of the present theory is that the similarity hypo- 
thesis proposed by Corcos (1964)-that the cross-spectral density can be written 
as one function of the streamwise separation distance times another function of 
the spanwise separation distance-follows from the insensitivity of the wave 
propagation constant to wave angle. Willmarth & Roos (1965) state that the 
experiments indicate that the similarity fails in certain cases, but the experi- 
mental results available so far are not comprehensive enough to allow a complete 
assessment of its validity. 

A possible explanation of the curious result that the theory seems to give 
excellent resultsif a viscosity much higher than the actual molecular value is used 
may be arrived at from examination of the non-linear fluctuating stress term on 
the right-hand side of (20). In  the inversion of the Fourier transform it was 
implicitly assumed that the Fourier transform of q was a smooth function 
without poles in the neighbourhood of the real axis. The ‘source term’ q is a 
quadratic functional of u, v, w. Hence, its Fourier transform is given by a triple 
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convolution integral. If the frequency wave-number spectrum of U, say, has a 
contribution from a wave-like disturbance of the form C / ( k z - a ) ,  then the 
Fourier transform of u2 will be of the form 

C(k - k’, w - w ’ )  C(k’, w ’ )  dk’dw’ l2 
/ / / [ k , - a ( k : , w ’ ) ]  [k , -kj:-a(k$-  k i , w - w s ) ] ‘  

The integration over kj: can be carried out under the assumption that the poles 
are near the real axis. One finds that 

2 / / C ( a , k k , ~ ‘ ) C ( k , - a ,  k, - a(kL, w ‘ )  - a(kz k*-k:,w-w‘)dk;dw‘ - k;, w - w ‘ )  

For a non-dispersive wave one has that a is proportional to w ,  a = Ko, say, and 
a is independent of kz if the Reynolds number dependence is assumed negligible. 
Then C(a ,  ki, w ‘ )  C(kx - a, kz - k;, w - 0’) dkLdw’ 

k, - KU 

- - k z - a  i / / C ( a , k i , w ’ ) C ( k , - a , k z - k k , w - o ’ ) d k : d o ’  

A 

Hence u2 will have a pole a t  k, = a, and the transform of q will thus have a pole of 
order two. The wave-number frequency spectrum will have terms like I k, - alp4 
which upon inversion will give rise to terms of the form (2 exp ( i a ,  ( - C L ~  I (1 ) in the 
cross-spectral density. Clearly, such ‘secular’ behaviour is a consequence of the 
divergence of the formal iterative solution at  k, = a in the non-dispersive case. 
To remove the singularity, one could add a small linear term on both sides of the 
equation such that 

C(a, ki, w ’ )  C(kz - CL, kz - k:, w - w ’ )  dkidw‘ = 0 // 
for all w and kz. An equivalent procedure is to calculate the propagation constant 
for a sinusoidal (in time) perturbation of infinitesimal amplitude superimposed 
on the pre-existing fluctuating flow field. If the fluctuations are known, this can 
in principle be done by expansion in the amplitude of the fluctuations. This will 
require going to terms that are of the order square of the fluctuating velocities 
times the amplitude of the wave (only terms linear in the infinitesimal ampli- 
tude of the wave need of course be retained). Such an investigation would 
be exceedingly complicated. However, it  seems likely on physical grounds 
that the scattering effect on the wave due to the pre-existing fluctuations 
would be largely a dissipative one perhaps having the overall effect of an eddy 
viscosity. 

7. Conclusions 
The basic aim of the present paper was to bring out the importance of the wave 

propagation mechanism due to the shear flow on the statistical properties of the 
turbulent fluctuations. It was shown that whenever lightly damped waves (of 
random phase and orientation) were present, they tended to dominate over the 
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other kinds of disturbances, the reason being that such waves can correlate over 
a large distance of the order of the inverse of their damping ratio. 

In  the analysis, the equations of motion for the fluctuations in a parallel shear 
flow were manipulated to produce a non-homogeneous Om-Sommerfeld equation 
with the non-linear fluctuating turbulent stress terms on the right-hand side of 
this equation being considered as a known forcing term. The possibility of wave 
propagation was then brought out through an expansion in terms of the eigen- 
functions of the homogeneous Om-Sommerfeld problem. Numerical values for 
the least damped eigenvalue for this problem, and hence for the dominating wave 
propagation modes, were obtained by the aid of a computer. The results were 
then used to calculate approximately the convection speed and stream-wise 
decay of the fluctuations as functions of the non-dimensional frequency, 
quantities that could be directly compared with experimental values. For the 
stream-wise decay, excellent qualitative and quantitative agreement was found. 
Thus, each wave component was found to decay by a factor of e-1 in a distance of 
about 1.4 times its wavelength and to have practically lost its identity com- 
pletely after a distance of 6 times its length in agreement with the measurements 
by Willmarth & Wooldridge (1962). That the only appropriate length scale in 
which the development of an individual eddy can be measured is the size of the 
eddy itself is a result in complete consistency with Millikan’s (1938) interpreta- 
tion of the logarithmic profile as one in which there is no specific length scale. 
The convection velocities given by the theory, on the other hand, turned out to 
be too low by about 30%. Excellent agreement was obtained, however, for a 
value of the viscosity about 80 times the experimental value. The conclusion 
drawn is that for a more accurate calculation of convection velocities one needs 
to consider the propagation of an infinitesimal wave in a flow with pre-existing 
fluctuations. No attempts have been made to attack this very difficult problem, 
but one may speculate that the fluctuations will act qualitatively like an eddy 
viscosity, at least for the long waves. Preliminary calculations with the eddy 
viscosity included in the linear perturbation equation in the manner proposed 
by Betchov & Criminale (1964) give a very much improved agreement for the 
convection velocity at lower frequencies ( d , / U ,  < 1.5), but at  the higher 
frequencies the predicted values were again too low. Of course, the use of a 
quasi-steady eddy viscosity can only be justified for waves of frequencies that 
are very much lower than those of the majority of the Reynolds stress-producing 
eddies. Somewhat surprisingly, viscosity was found to have considerably less 
influence on the decay rate d = aI/aR than on the convection velocity. This may 
be a partial explanation of the success for the former quantity, despite a possibly 
incorrect ‘effective viscosity ’ employed. The theory was found to confirm 
Corcos’s (1964) similarity hypothesis which could be shown to be a consequence 
of the insensitivity of the wave-propagation constant to wave orientation angle. 

The present results apparently contradict some of the basic hypotheses made 
by Malkus (1956) in his interesting theory of shear-flow turbulence. He postu- 
lated that the smallest scale of turbulence would be determined from the condi- 
tion of marginal stability. The present theory shows that, for a shear flow that is 
statistically homogeneous in the direction of the flow (as is indeed the case for the 
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problem considered by Malkus; the flow between parallel plates), all waves must 
be damped, otherwise disturbances from the leading edge or entrance of the flow 
would propagate any distance downstream and hence destroy the homogeneity. 
The numerical eigenvalue calculations tend to confirm this; no unstable or 
marginally stable eigenvalue in the Orr-Sommerfeld sense was found despite 
extensive variations of the parameters involved. In  fact, all waves turned out to 
have about the same damping ratio and are highly stable from the point of view 
of laminar stability theory. Arecent calculation by Reynolds & Tiederman (1967) 
employing the asymptotic method also confirms the present finding that the mean 
velocity profile is stable. These authors were able to show that Malkus’s apparent 
success in predicting the constants involved in the logarithmic profile might have 
been due to an inaccurate estimate of the stability boundary. However, it should 
be pointed out that the velocity profile considered by Malkus was different from 
the one used here and by Reynolds & Tiederman (1967). His profile had a second 
derivative obtained as the square of a finite Fourier series which could have a 
finite number of zeros and therefore be susceptible to inflexional instability. In  
contrast, a mean velocity profile given by an expression like (31) always has a 
very large negative second derivative and would therefore be expected to be 
highly stable. It would seem that Malkus’s ideas on the stability might have more 
relevance for the instantaneous velocity profile which undoubtedly will have 
local regions of strong inffexional instability in the manner considered by 
Greenspan & Benney (1963) in their analysis of turbulent bursts in the final stage 
of transition. 

Malkus (1956) also hypothesized that the non-linear terms have a stabilizing 
influence on the fluctuations. In  the present model, the non-linear terms are 
actually considered to be the driving terms, and hence, in a sense, de-stabilizing. 
That non-linear terms can cause instability is known from the phenomenon of 
turbulent bursts (Greenspan & Benney 1963). The present analysis does not 
attempt to shed any light on the non-linear driving mechanism itself. What is 
envisaged in the model is rather the long-range effect of it local break-down being 
propagated in the form of waves. Recent experimental research by Runstadler, 
Kline & Reynolds (1963) and Tu & Willmarth (1966), gives strong indications 
that an essential part of this mechanism is provided by highly swept eddies 
shooting off in a random fashion from the laminar wall layer into the turbulent 
portion. It is dear that such a process will cause direct non-linear interaction 
between wave-numbers over a large range, and that the traditional conceptual 
picture of large turbulent eddies breaking down into smaller ones, and these in 
turn into even smaller ones until viscosity takes over is unlikely to be of much 
help. It is also doubtful whether one could attack the non-linear sustaining 
mechanism by conventional statistical methods. For example, the cross-spectral 
density was shown to be dominated entirely by the least damped wave, but these 
may or may not by themselves be important in the non-linear interaction 
process. 

A fortunate circumstance was that the present analysis could be carried 
through with a minimum of assumptions. The restriction to an incompressible 
flow is not essential and can in principle be relaxed. The stability theory for a 
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compressible parallel flow is well developed (Mack 1965) but the numerical 
calculations are considerably more complicated and time-consuming. As to the 
assumption of a parallel flow it is known to be an excellent one, even for shear 
flows which vary much more rapidly in the stream direction than the flat-plate 
boundary layer. However, if an individual wave persists for a distance over 
which the shear profile or shear layer thickness changes considerably, one must 
account for this variation. In  such cases, streamwise homogeneity is of course 
destroyed. Such will be specifically the case for a jet or a free shear layer or other 
shear layers with inflexion points. For these, there would be frequency ranges for 
which the wave will be unstable. A wave of a given frequency would not grow 
indefinitely large, however, because due to the growth of the shear layer, it  will 
eventually travel into a stable region. Whether the basic idea of the dominance of 
the linear wave modes would hold also for unstable flows is not certain, however, 
because of the very large fluctuations known to be present in such flows. 

Many possible extensions of the present theory are obvious. Thus, for example, 
the validity of the assumption that the higher eigenvalues are considerably more 
damped and that therefore only the least damped wave mode needs to be con- 
sidered, can be directly verified by the calculation of the next eigenvalue. The 
computational program used did not allow a systematic exploration of the higher 
eigenvalues, but occasional results that were obtained by chance indicate that 
the eigenvalue for the next mode has a damping ratio of about twice the lowest 
one. 

The initial work on the problem was supported by NASA Contract no. 
NAS-1-3179 while the author was serving as a consultant to McDonnell Aircraft 
Corporation. Subsequent support has been provided by NASA Grant NsG-496 
with the M.I.T. Center for Space Research. Early programming efforts were 
supported by the Office of Naval Research under Contract no. Nonr-1841(89). 
The computation was carried out at the M.I.T. Computation Center under 
problem number M 1952. 

I would like to express my thanks to Dr Louis N. Howard for very valuable 
help with the very difficult computation problem, and for many enlightening 
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